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Abstract-Hot molten metal flowing through a cylindrical pipe is frozen by the cold walls of the pipe and 
forms a solid crust on the walls. A model is presented to describe the growth of this crust given that the flow 
through the pipe is turbulent. Criteria which determine whether or not the pipe will block are investigated 
and some results from the theoretical analysis are presented for flows with Reynolds number between 2000 

and 100,000 appropriate to those fluids with Prandtl numbers in the range 0.007~0.1 

A,(Pr, Re), 
B, 
c(Pr, Re), 
c, 
C,(Pr, Re), 
4 d,, 
WX 

NOMENCLATURE 

nth eigenconstant in series (43); 
dimensionless wall temperature ; 
turbulent flow parameter; 
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nth eigenconstant in series (37); 
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T(r, z, t), 
T,,,, To, T,, 
u(r, 2, t), 

axial velocity function ; 
Blasius friction factor ; 
heat flux used in stability analysis; 

steady state variants ofj‘; 
turbulent thermal diffusivity ; 
function used in stability analysis; 

turbulent flow parameter ; 
= Pr%/4pv~ l& Graetz Number; 
turbulent flow parameter; 
thermal conductivities of fluid and 
solid; 

length of cylinder ; 
natural logarithm function ; 
latent heat of fusion of fluid; 
fluid pressure ; 
pressure drop over pipe ; 
Peclet number and initial Peclet 
number ; 

= V/K, Prandtl number; 

inlet volume flow rate; 
radial coordinate ; 
radius of cylinder ; 
‘crust free’ radial coordinate ; 
nth eigenfunction in series (37); 
Reynoldsnumber and initial Reynolds 
number; 
= C(T, - T,)/L, Stefan number; 
time; 
temperature ; 
melting, entry and wall temperatures ; 
radial velocity component; 

w(r, z, tb axial velocity component ; 
*tz, tl bulk axial velocity component; 

Z, axial coordinate. 

Greek symbols 
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W, z, Lb 
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Superscript 
* 

dimensionless pipe length ; 
gamma function of x, 
crust position ; 
steady state crust position ; 
dimensionless temperature ; 
= k,/pC, thermal diffusivity of fluid; 
nth eigenvalue in series (37) and (43); 
function used in stability analysis ; 
kinematic viscosity of fluid ; 
density of both fluid and solid ; 
decay rate used in stability analysis. 

denotes a dimensional variable. 

INTRODUCTION 

THE SOLIDIFICATION of a hot liquid as it flows through a 
cold pipe has been of interest for some years now and 
many models have been proposed. The problem is of 
practical significance to many engineers and of parti- 
cular interest to those in metals technology. In this 
field it is common for liquid metals to be passed 
through pipes either to be directed or to be used in 
some continuous casting process. The flow of the 
liquid metal is likely to be turbulent and consequently 

it is difficult to analyse the flow and heat transfer. 
Turbulence affects these variables through viscosity 
and conductivity and so it is apparent from the outset 
that solutions will depend upon the Reynolds number 
of the flow and the Prandtl number of the fluid. 
Because of this, it is necessary to restrict numerical 
analysis of the problem to certain ranges of Reynolds 
and Prandtl numbers although the mathematical 
analysis should remain valid for any turbulent flows, 
within the confines of the model. 

There appear to be two main approaches to this type 
of problem. A general approach, adopted by Szekely 
and DiNovo [l], uses many mathematical equations 
familiar in heat transfer theory to produce numerical 
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results directly. While this approach takes into ac- 
count the fluid region before solidification and finite 
thickness of the pipe wall, little analysis is performed. A 
steady state model by Thomason et al. [2] uses heat 
transfer coefficients, in common with [l], to develop a 
theory in conjunction with some experimental work 
on water. The mathematical model is simpler and has 
more in common with our model than that of Szekely. 
These models are based largely upon Nusselt number 
formulations. 

The second approach, based rather upon the Graetz 
number, is the one that we shall adopt. The Graetz 
Problem involves the solution of the steady state radial 

conduction and axial convection heat equation in 
terms of an infinite series of eigenfunctions with 
associated eigenvalues and eigenconstants. The analy- 

sis for laminar flow has been known for some time 
now [3] and more recently, Sleicher et al. [4] and 
Notter and Sleicher [5] presented an analysis for the 
turbulent Graetz problem in a constant diameter 
cylinder wherein may be found tables of the relevant 
eigenquantities and formulae for asymptotic forms. 

A steady state model proposed by Shibani and 
Ozisik [6] drew upon the work by Sleicher, recalculat- 

ing some of the coefficients, and applied it to the freez- 
ing of fluids with Prandtl numbers between 0 and 1000 
although the applicability of their analysis to a fluid 
with a Prandtl number of zero is suspect since the 
assumption of a large Peclet number is no longer valid. 
A later paper by Cho and Zizisik [7] dealt with 
transient freezing, i.e. the development of the solidified 
crust in time, by integral transform methods. It is 
difficult, however, to ascertain blockage criteria with 
these models since the results seem to indicate an 
exponential type approach to pipe closure, thus neces- 
sitating the use of some un hoc definition of block- 
age, whereas the present approach allows for the 
possibility of complete blockage. It should be pointed 
out that the fine details of blockage are complex and 
other models should be applied for this sort of 
information, the main interest lying not in the mech- 

anism, but rather the fact, of blockage. 

THE MODEL 

The analysis in this work relates to the simplified 
model shown in Fig. 1. A hot fluid of constant density, 
viscosity, thermal conductivity and specific heat is 

forced through a cold pipe of finite length and radius 

r* 
t 

by a pressure drop maintained over the length of the 
pipe. The pipe wall is held at a constant temperature, 
below the melting point of the fluid, providing an 
isothermal boundary for the fluid whilst it is inside the 
pipe. The fluid temperature on entry to the pipe is 
constant and is greater than the melting temperature of 
the fluid. The flow is considered to be turbulent, fully 
developed and radially symmetric, allowing us to 
dispense with angular components and dependencies 
in the cylindrical coordinate system used in the 
analysis. This last assumption is valid if buoyancy 
effects and free convection are neglected. Since the flow 
is turbulent, conduction of both momentum and heat 
in the axial direction will be ignored as being negligible 
in comparison with radial conduction, allowing us to 
drop the axial double derivatives, an assumption valid 
for a large Peclet number. 

Initially there is no solidified layer but as time 
passes, the fluid loses heat to the pipe wall and begins 
to freeze inwardly. This solid layer will, like the fluid, 
have constant specific heat, thermal conductivity and 
a density equal to that of the fluid. If the Stefan number 

of the system is sufficiently small, then the flow of the 
fluid can be described as quasi-steady allowing us to 
neglect the time rate of change of temperature and 
momentum in the fluid equations. This effectively 
means that the fluid flow and temperature fields will 

change more quickly than the position of the solid/ 
liquid interface. 

The mathematical model is developed in the follow- 
ing manner. Conservation of mass, in cylindrical 
coordinates, is expressed by the equation : 

& (r*u*) + & (r*w*) = 0 

where mean turbulent radial and axial velocities are 
used. This equation holds in the fluid region defined by 
0 < r* 2 6* and 0 I z* 5 1,. To satisfy equation (1) 

we write expressions for the axial and radial velocities : 

w*(r*, z*, t*) = Q(t*)f(r*/h*)/cS*‘(z*, t*) , (2) 

u*(r*, z*, t*) = (r*/S*)w*(i?h*/c?z*) (3) 

Radial symmetry and the no-slip condition on the 
solid/liquid interface together imply that f(R) is an 
even function of R and thatf(1) = 0. Without loss of 
generality, we may impose a further condition on J 
namely 

T*=T, 

TX= To 
PX=P 

t” 

FIG. 1. 
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1 

-s 

6’ 

8*2 
2r*f(r*/6*) dr* = 1, 

0 

or alternatively 

s 

1 
2Rf(R)dR = 1. (5) 

0 

This ensures that the bulk mean axial velocity, defined 

by 

w*(z*, t*) = $ 
s 

6’ 
2r*w* dr* (6) 

0 

is given by the expression 

w* = Q(t*)/s*‘(z*, t*). (7) 

The local Reynolds number, based upon the local 
diameter (i.e. 26*) is then expressed as 

Re = 28%*/v = 2Q(t*)/v6*. (8) 

Now most of the terms in the axial momentum 
equation, being either of the order of the Stefan 
number or inversely proportional to the square of the 
initial Peclet number, are neglected. There remains the 
standard formula relating the pressure gradient to the 
bulk axial velocity 

ap*laz* = - pf~\i;*2j46* (9) 

wheref’ is the friction factor. For laminar flow, the 
friction factor is inversely proportional to the Rey- 
nolds number (Hagen-Poiseuille law for Reynolds 

number less than about 2000), whereas for turbulent 
flow the situation is more complex. For a Reynolds 
number in the range from about 2OOt-105, a suitable 
law is the well known Blasius formula, 

f’ = 0.3164 Re- ‘I4 (10) 

which will be used in equation (9). More accurate 
expressions for friction laws do exist, valid over larger 
ranges of Reynolds number, but these are usually 
implicit in nature, making analysis difficult. Numerical 
analysis can be performed with some confidence on 
pipe configurations where the initial Reynolds number 
lies within the range ofvalidity of (10). Above this range 
results may be suspect, but no more so than the tacit 
assumption that the Blasius friction law holds good for 
pipes of variable radius. Below this range, the laminar 
analysis as presented in Part I [8] may be used. On 
using the above definitions of Reynolds number and 
friction factor in equation (9) we recover 

dp*/dz* = -0.3164(2-9”)pv1’4Q7’4(t*)6*-19’4. (11) 

The pressure must satisfy the boundary conditions 

p*(O, t*) = P and p*(l,, t*) = 0 appropriate to the 
assumption of a constant pressure drop maintained 
over the pipe length. There are thus two boundary 
conditions for a lst-order differential equation and so 
the solution is: 

p*(z*, t*) = P Jz; 

s 
(12) 

8*-19,4 & 

0 

where Q(t*) is also determined by this equation and is 
given by 

Q(t*) = (8v)3,7 lp/(O.3164 ,_w jr 8*-‘9’4 dz*)]l”. 

(13) 

In this way, we see that the velocity field is defined by 

the fixed initial pressure drop. It is clear that as the 
crust thickens (i.e. as 6* decreases) the axial inlet 
velocity will decrease although the axial velocity as a 
whole will increase along the pipe. The decrease of the 
inlet velocity is due to the increasing viscous resistance 
whilst the narrowing of the effective radius along the 
pipe accounts for the increase in speed. This approach 
to inlet conditions is fundamental and is the main 
reason why it is possible to obtain blockage criteria. 
Other models have proposed that it is the inlet axial 

velocity which, as opposed to the pressure drop, is held 
constant, an untenable position we believe since the 
axial velocity must then increase indefinitely as the 
pipe blocks. 

THERMODYNAMICS 

For a description of the heat transport we use the 
convective diffusion equation, ignoring axial con- 

duction and the time derivative since they are of the 
order of the inverse square of the initial Peclet number 
and the order of the Stefan number respectively. Thus 

u*g+w*g=$ &(r*g*g) (14) 

where mean turbulent quantities are again used and g* 
is the radially dependent turbulent thermal diffusivity. 
This diffusivity is typically the same as the laminar 
diffusivity near boundaries but is higher near the 
centre of the flow, see e.g. Kays [9]. Unfortunately, 
from the points of view of simplicity, g* also depends 
upon the Prandtl and Reynolds numbers. 

In the solid region, defined by 6* 2 r* I r. the 

velocities u* and w* are zero and g* is constant, hence 
the temperature in the crust is given by: 

ln (To/r* 1 
T$=T,+(T,-T,)- 

ln (r,P*) 
(15) 

satisfying the isothermal boundary conditions on the 
pipe wall and the solid/liquid interface. The fluid 
region needs more detailed consideration and to this 
end it is convenient to non-dimensionalize the 
equations: 

T* = T, + (To - T,)@(r, z, t), (16) 

6* = r,S(z,t), (17) 

r* = t-g, (18) 

z* = r,Pe,z, (19) 

t* = rit/2rc St, (20) 

9* = arm (21) 
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which gives 

where 0 is subject to the boundary conditions 

8(r, 0, t) = 1, (23) 

f?(& z, f) = 0. (241 

Certain conditionsonf(r/6)have already been noted 
and those on g(r/S) are that y(O) > 1 and g( 1) = 1 with 
dg(x)/dx 5 0. Note that Re, (the Reynolds number at 
t = 0) is given by 

Re, = 2Q(O)/vr, = L &-1 KIO 
- -Gz 

1 

4:‘. (25) 

0.1364 VT0 
and so if we define the quantity 

we have that 

6 .’ I9 I4 (ZJ) dz (27) 

where 

There is a further interface condition to (141, viz. 

which in dimensionless form now becomes, using (is), 

*~__!!_-- de 
?t 61nb ij ar r=a 

(301 

where the dimensionless freezing parameter is 

R = MT, - T,YMT, - T,). (31) 

To remove the difficulty of having to numerically track 
a moving boundary, we transform the independent 
variables by writing R = r/6 (and keeping z as it is) to 
obtain the ‘crust free’ version of (22): 

where T(R, z) = B(RS, z, t) subject to 

T(R,O) = 1, 

T(l,z) = 0 

and (30) becomes 

(35) 

In practice, we look for a solution to (35) subject to 
(32)-(34) rather than vice versa. Further con- 
ditions on (35) are: 

6(z, 0) = fi(O, t) = 1. (361 

THE TURBULENT GRAETZ PROBLEM 

Equation (32) can be solved by writing: 

T(R, z) = i C,R,(R) exp [ - $D(r)z], 
II=0 

where from (33) 

i C”R,(R) = 1 
“=O 

and R,(R) satisfies the eigenvalue problem : 

with initial conditions 

R,(O) = 1 and R,(O) = 0 

(37) 

(38) 

(39) 

(40) 

where the eigenvalues A, are such that they must satisfy 

(34), i.e. we must have that 

R,(l) = 0. (411 

Solutions to the system of equations represented by 
(39) have been generated numerically for the first few 
values of n (see [4-61) and for larger eigenvalues, 
asymptotic expressions have been derived. We use the 
notation and results presented in [4] and [S] : 

GA, = (a + 2/3) i [C In (n + Z/3)71 
+ 7jt&r],‘27c(n + 2/3) (42) 

where both G and c depend upon the Reynolds number 
of the flow and the Prandtl number of the fluid through 
the turbulent functionsfand y in (39). Equation (35) 
requires a series for (:T/?R evaluated at R = 1. This is 
obtained from (37) as the series expansion 

2A, exp [ - A$(t)zJ (43) 

where 

A, = - C,R;(l)/Z (44) 

and the asymptotic (large n) expression for A, is 

(H/G’)’ ,3 3J,b I-(2/3) --.----.-~-~--__ 
Am _ (GA,)‘.3 2n F(1/3) 

x i 1 - ~(~$7 GA, rr - 1) + -- 
-” 

where H is defined as 

H = (0.3 164/32) Re3 ‘4 

1 df =--- 
2 dR R=, 

= Ref’j32. (46) 

The quantities c and G which are present in these 
asymptotic formulae have been listed for certain 
discrete values of Re and Pr in [5]. It is worth noting 
that the expression for the interface heat flux will be 
calculated as a function of z and t and since the flux 
depends upon the flow, thecoefficients and eigenvaiues 
must be calculated as functions of the tocal Reynolds 
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number. Thus there is no ‘once and for all’ calculation 
of the heat flux. We have already remarked that the 
axial velocity, and so by implication the local Reynolds 
number, is an increasing function of z but a globally 
decreasing function of t. In fact, numerical evidence 
indicates that the dependence of the Reynolds number 
on z is rather weak and so it might be possible to avoid 
the recalculation of the A, and 1, at every axial grid 
point by using a time dependent, axially averaged, 
Reynolds number. 

NUMERICAL CALCULATIONS 

Because of the four parameter nature of the system 
(i.e. Re,, PP, CI and B) it would be difficult to present 
results which would be meaningful in a general sense. 
Instead, the method of solution will be outlined, with 
an example, and the reader should refer to an earlier 
paper [lo] by the authors which describes a computer 
programme written in FORTRAN designed to cal- 
culate the time development of crusts with laminar or 
turbulent flow given the physical parameters of the 
system. 

The first step is to calculate coefficients for a pair of 
4th-order polynomial functions, dependent upon Re, 

for the turbulent flow parameters c and G. These are 
calculated from knowledge of the Prandtl number and 
using the data found in [4] and [S]. Subsequent vaiues 
of these parameters may be calculated without re- 
ferring again to the Prandtl number. At the start of the 
experiment, the temperature gradient is zero and so 
equation (35) can be integrated exactly, for small t, to 
give 

2Bt = 1 - 6* + 6* In (6’) 

which can be inverted for small t : 

(47) 

6(z t) - 1 - (Bt)‘l’ , + (48) 

to give an initial evenly distributed ‘thin-ice’ crust, 
except at z = 0 where (36) always holds. The quantity 
D(t)can then be calculated by Simpson’s Rule. Follow- 
ing this, it is necessary to calculate Re at every axial 
grid point, from the relation : 

Re = 2Q(t)/vr,b(z, r) = Re,/G(z, t)D(t) (49) 

B 
CL 
Pe, 
Pr 
Gt 
St 
Re, 

Table 2. Dimensionless parameters 
_ 

Run (1) Run (2) Run (3) Run (4) 

0.01297 0.08594 OS2891 0.17189 
0.1289 0.1289 0.1289 0.1289 

77.6 77.6 77.6 77.6 
0.01049 0.01049 0.01019 0.01049 

30.598 30.598 30.598 30.598 
0.0262 0.0262 0.0262 0.0262 

7399 7399 7399 7399 

and hence it is then possible to calcuiate c and G from 
which we obtain as many of the values of A, and i, that 
are necessary for the calculation of the interface heat 
flux. A 4th-order RungeeKutta process is then used to 
calculate new values for 6 and the procedure continues 
with the next calculation for D(r). This is done until 
either a steady state is reached or until the pipe blocks. 

For the purposes of numerical analysis, steady state 
will be said to have been reached if the magnitude of 
the crust velocity at the pipe exit becomes smaller than 
some appropriate value (typically about 10m5 in 
dimensionless units). Blockage can be defined when 
the radial position of the crust goes negative (as it may 
in this model) but in most cases the calculations will 
stop since near blockage, more detailed analysis 
should be applied (see e.g. (Ill]). Instead, we note that 
the pipe will block and this is signalled either by D(t) 
becoming too large or by the fact that the crust velocity 
at the exit, having reached a non-zero minimum 
absolute value, is beginning to increase again, In order 
to illustrate the behaviour of the crust, we will provide 
four specific examples to demonstrate behaviour with 
varying wall temperature. Table 1 lists the inputs for 
these examples while Table 2 lists the associated 
dimensionless parameters. Figures 2 and 3 show the 
growth of the crusts at the pipe exit with time and the 
rates of crust growth respectively. From these phase 
diagrams it is easy to see which will block well before 
the same information can be deduced by looking at the 
crust alone. 

The predicted blockage time ofrun (4), from Fig. 2, is 
about 61 s, although it should be remembered that this 

Table 1. Inputs 

Unit Run (1) Run (2) Run (3) Run (4) 

Pipe length (cm) 
Pipe radius (cm) 
Pressure drop (kgm-Is-‘) 
Density (kgmm3) 
Kinematic viscosity ( x 10-6m2s- 
Solid conductivity (Wm-‘K-l) 
Fluid conductivity (Wm-‘K-t) 
Specific heat (Jkg-‘K-‘) 
Latent heat (kJkg_‘) 
Fusion temperature (K) 
Inlet temperature (K) 
Wall temperature (K) 
Initial mass flow rate (kgs-‘) 
[derived = npQ(O)] 

45i.4 45L2.4 45i.4 45i.4 
7232 7232 7232 7232 

-I 1 4.63 4.63 4.63 4.63 
198.7 198.7 198.7 198.7 
231.2 231.2 231.2 231.2 

12.4 72.4 72.4 72.4 
276 276 276 276 

1800 1800 1800 1800 
1900 1900 1900 1900 
1795 1790 1785 1780 

7.783 7.783 7.783 7.783 

20 
_I 

20 ^ 
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Dimensionless time 

70 

60- 

Percentage blockape 

5 IO 15 20 25 30 35 40 45 50 55 60 6: 

Time, s 

FIG. 2 

is not to be taken too seriously since the model would 

no longer be accurate. It does, however, provide a 
reasonable minimum estimate. Run (2) seems to be 
near critical since it has not succeeded in satisfying the 
criterion for steady state in the time available although 
the exit crust has remained at 16.6% blocked for over 
10 s with a value for D(t) = 1.288 for considerably 
longer. Run (1) has stabilised at 7% blockage after just 
under 35 s with D = 1.108. Another run, not shown in 
the figures since differentiation between them would be 
difficult, was performed with exactly the same inputs as 
run (1) but with double the pressure drop. In this case, 
a steady state blockage value was 7.2% with D = 

, 

1.1006 having taken just over 45 s to reach steady 
state. 

CONCLUSIONS 

This model should provide a reasonable description 

of the solidification of liquids. It is most suitable for 
those situations where unblocked steady states are 
reached where it can be used to describe the entire 
process. In the case of blockage, the entire process 
cannot be described with it since closure requires a 
more refined model as mentioned earlier. In addition, 
there is the problem, which does not arise in turbulent 
flow, that as the pipe progresses towards blockage the 
Reynolds number must eventually drop below the 
turbulent/laminar transition region. It is not clear 
whether in this case the flow remains turbulent but this 
has been considered as certain parameters (viz. c, G 
and H) are limited by their laminar values in the 
computation which should ensure that the description 
is accurate for as long as possible. However, we do not 
regard the details of blockage as particularly impor- 
tant but rather do we maintain that blockage will 
occur if there are no steady state solutions. 

More accurate models would naturally include 
variable viscosities and densities and possibly more 
realistic fluids where no single melting point exists but 
rather a melting range over which the mechanism of 
latent heat would operate. 
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for 0 I z I a and for I 2 where the functionfbehaves thus: 

f = 0(z-*“)asz+O, (A.4a) 

3=O[exp(- kz)]asz+ -L, (A.4b) 

af/az < 0 for all z > 0 (A.4c) 

and 6’ is O(1) as z + 0. Equation (A.l) is then 

a:(z) = expC - W.(z)1 (A.5) 
where f,(z) is the assumed steady state value of 3(z. t). We 
introduce linear ~rturbations about the steady state by 
writing 

D(t) = D, + d (r); S2(z, t) = S:(z) + @(i(z) exp ((II) (A.6) 

where u is a growth rate away from steady state. Substituting 
into (A.3) and (27) gives, after linearization, 

APPENDIX 

Weexamine theexistence of stable steady state solutions to 
eqn. (35) by setting the right-hand side equal to zero. It will be 
shown that there are no, one or two solutions which satisfy 
(35) and (27) dependent upon the values found for DI, B, Re, 
and Pr. The analysis is similar to that described in [S] but 
since exponents of 417 appear in the turbulent model it is not 
immediately clear that singularities will not arise. 

If we assume a steady state solution for 6, denoted by 6,(z) 
and a corresponding steady state value of D, for D(r) then 
from (35) and (43) we can write 

6,(z) = exp - B/ f 24, exp (- $$J,z) 1 (A.1) 
J 

n=o 

and we can define a function p: 

j@,) = OS”4 - i c( ; 6,- 19’4 (z) dz. 
s 

(A.2) 

By substituting (A. 1) into (A.2) we can plot, for fixed a, Pr and 
Be,,, a graph of@ against D, for parameter B. An accurate plot 
can be obtained only by including the dependence of A, and 
J.” upon D, but the general shape of the curves will be 
unaffected. To obtain p(D,) accurately, iteration would be 
performed with D, and 6,(z) and it can be shown that, 

Fro. Al 

(g + 2B/6f In’ Sz)&z) = ze-“’ d(r)(d&dz)/D, , (A.7) 

-19 1 X d(r) = _e@D-3”- 
14 = s 

o &z)&-=*(z) dz (A.8) (L 

where dfdz in (A.7) is an approximation since the small axial 
variationsin the A,, and II. have been neglected as irrelevant to 
the analysis. If we let 

d, =’ u 
s 
oz &)s; 27’4 (z) dz (A.9) 

then (A.7) and (AX) give 

(a -t 28/&z In* &,2)&z) = ; 0; ‘I4 d,z(&/dz) 

and so we obtain 

(A.10) 

$j((z)s; 27’4 = - gDse7j4 z(df;/dz)/(cr + 2B,@ In* 6:) 

(A.ll) 

which can then be integrated, excluding the trivial solution 
where d, = 0, to give the condition 

1 = _!+4! 

I 

ix z(d&‘dz) dz 

G( 0 6:‘” (CJ + 2B/6: In2 652) (A’12) 

from which g can be, in principle, obtained. Now, on 
substituting (A.5) into (A.12) we obtain 

ZBz(dfJdz)exp (27B/4& dz 

[2oB +R exp (2B!f)l 
(A.13) 

Clearly, if (r = 0 then this reduces to 

exP (19B/4&r d!JY? 

which has the solution 

6; '9,4(a) = 

0 
4 

11 

(A.14) 

(A.15) 
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which is also obtainable directly from (A.2) and so (A.15) 
satisfies the equation p = dp/dD, = 0 which means that the 
case CT = 0 represents the critical case given by D, in Fig. Al. 

When eqn. (A.21 has two distinct roots, D,, and D,,, it can 
be seen Irom me figure that there exists a value D, such that 
I),, < D,, < D,, which will satisfy the condition dji,/dD, = 0 
but will not satisfy p = 0. We know that since dil/dD, > 0 at 
D, = D,, then 

4 D,, z -- !! 11 
4’7 exp [19WX,(a)l (A.16) 

and also 

(A.17) 

where jt,,@) and I_,@) are the corresponding appropriate 
values off,(a). If we assume that u is positive then (A.13) gives 

- 19R 
I=--.--- ’ z(dj”,Jdz) exp (27B/+f,,) dz 

‘aDA 230 +fz exp (2B/f,,) 

= s 0,: 7’4 exp [ 19B/4j&~)] - “s 

since df_Jdz < 0, hence 

(A.18) 

D. < $ "exp[l'?B/7fJ~~)] \s 
C J' 

(A.19) 

which contradicts (A.16) and so CI must be negative if D,, is to 
satisfy (A.13) which means that D,, represents a stable 
solution. If D is negative then the condition for D_ to satisfy 
(A.13) becomes, by exactly the same argument, 

(A.20) 

where the inequality has been reversed since 

2Bo 4-J.: exp(2&,) 

is now less thanj,: exp(l?E,%,) due to the sign of u. Equation 
(A.20) contradicts (A.17) and so D,, is an unstable solution. 

UN MODELE MATHEMATIQUE DU BLOCAGE DE TUYERE PAR LE GEL 
Il.-ECOULEMENT TURBULENT 

RisumP-Un m&al fondu s’icoulant dans un tuyau cylindrique est solidifid par la paroi froide du tuyau et 
une croOte solide est form&e sur la paroi. On pr&ente un modCle pour dCcrire la croissance de cette crotite, 
l’&oulement &ant turbulent. Des crittres qui diterminent s’il y a blocage ou non sont 6tudib et quelques 
risultats de l’analyse thCorique sent prCsentis pour des ecoulements avec un nombre de Reynolds compris 

entre 2ooO et 1OO.ooO et un nombre de Prandtl entre 0,007 et 0,l. 

EIN MATH~~ATISCHES MODELL FOR DIE BLOCKIERUNG EINER M~NDUNG DURCH 
GEFRIEREN 

Zusammenfassung-HeiBes, geschmolzenes Metall, das durch ein zylindrisches Rohr fliel3t, erstarrt an den 
kalten Rohrwlnden und bildet dort eine feste Kruste. Ein Model1 wird angegeben, das fiir turbolente 
Rohrstr~mung die Wachstumsrate dieser Kruste beschreibt. Die Kriterien wurden untersucht, die angeben, 
ob das Rohr zufriert oder nicht. Einige Ergebnisse der theoreti~hen Berechnung werden angegeben. Sie 
gelten ftir Str6mungen mit Reynolds-Zahlen zwischen 2ooO und IOOOOO, die zu Fliissigkeiten mit Prandtl- 

Zahlen im Bereich zwischen 0,007 bis O,l passen. 

MATEMATMYECKAR MOflEjlb 3AllMPAHMII C0Fl.Jl.A IlPH OCTbIBAHMM 
PACnJIABJlEHHOrO METAJIJlA. qACTb II - TYP6YnEHTHOE TEqEHME 

Aworamtn - llpii TewHMM B I@iRKH&XVteCKOiz TpyGe rOpnYHii pacIl.naBJIeHHbifi Me-ran:1 XX1 blRXT 
y XO.~O~H~~X cTet4oK TpyGbt. a pesynbfa-re zero tra creHKax odpa3yercn rsepnas KopKa. &IS 0ri~C~~ri~~ 
npouecca 06pa3oaa~~a raxoit xopxlr npeX_iasnena h+oaenb. a k.oTopoii npennonarae-rcn. ?To revenue 
a Tpy6e RB.QXeTCIl Typ6yXHTHMM. npltBeJIetfL% KpirTepriH JLwI OnpeWIeHHn 803MO~HOc7 M B03HMKHO- 
aemm 3anupawua. It npencraaneubl HeKoropbre pe3ynbTarbi -reopeTHrecKoro auan343a :ma retreirafi Co 
‘*na~eB~~~~ Yltc.ria Pefiwo.vbfica, ~e~am~~~ a LtHana30He 1000 100 000. “ITO cooreercrsyer xM,lKOCTSIF4 


