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Abstract—Hot molten metal flowing through a cylindrical pipe is frozen by the cold walls of the pipe and
forms a solid crust on the walls. A model is presented to describe the growth of this crust given that the flow
through the pipe is turbulent. Criteria which determine whether or not the pipe will block are investigated
and some results from the theoretical analysis are presented for flows with Reynolds number between 2000
and 100,000 appropriate to those fluids with Prandtl numbers in the range 0.007-0.1.
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NOMENCLATURE

nth eigenconstant in series (43);
dimensionless wall temperature ;
turbulent flow parameter ;

specific heat;

nth eigenconstant in series (37);
perturbations of D, ;

dimensionless crust growth
parameter ;

o)) steady state variants of D;
axial velocity function;

Blasius friction factor;

heat flux used in stability analysis;
steady state variants of f;

turbulent thermal diffusivity;
function used in stability analysis;
turbulent flow parameter;

= Prifdpvk 12, Graetz Number;
turbulent flow parameter;

thermal conductivities of fluid and
solid;

length of cylinder;

natural logarithm function ;
latent heat of fusion of fluid;
fluid pressure;

pressure drop over pipe ;
Peclet number and initial
number ;

v/k, Prandtl number;
inlet volume flow rate;
radial coordinate ;

radius of cylinder;

‘crust free’ radial coordinate;
nth eigenfunction in series (37);
Reynolds number and initial Reynolds
number ;
= C(T, —
time;
temperature ;

melting, entry and wall temperatures;
radial velocity component ;

Sz

Peclet

/L, Stefan number;
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w(r,z,t), axial velocity component ;
w(z, t), bulk axial velocity component ;
z, axial coordinate.
Greek symbols
a dimensionless pipe length ;
I'(x), gamma function of x,
Mz, 1), crust position
04(2), steady state crust position ;
o(r, z, 1), dimensionless temperature ;
K, = ki/pC, thermal diffusivity of fluid;
Ao nth eigenvalue in series (37) and (43);
u(D,), function used in stability analysis;
v, kinematic viscosity of fluid;
P density of both fluid and solid;
o, decay rate used in stability analysis.
Superscript

* denotes a dimensional variable.

INTRODUCTION

THE soLIDIFICATION of a hot liquid as it flows through a
cold pipe has been of interest for some years now and
many models have been proposed. The problem is of
practical significance to many engineers and of parti-
cular interest to those in metals technology. In this
field it is common for liquid metals to be passed
through pipes either to be directed or to be used in
some continuous casting process. The flow of the
liquid metal is likely to be turbulent and consequently
it is difficult to analyse the flow and heat transfer.
Turbulence affects these variables through viscosity
and conductivity and so it is apparent from the outset
that solutions will depend upon the Reynolds number
of the flow and the Prandtl number of the fluid.
Because of this, it is necessary to restrict numerical
analysis of the problem to certain ranges of Reynolds
and Prandtl numbers although the mathematical
analysis should remain valid for any turbulent flows,
within the confines of the model.

There appear to be two main approaches to this type
of problem. A general approach, adopted by Szekely
and DiNovo [1], uses many mathematical equations
familiar in heat transfer theory to produce numerical
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results directly. While this approach takes into ac-
count the fluid region before solidification and finite
thickness of the pipe wall, little analysis is performed. A
steady state model by Thomason et al. [2] uses heat
transfer coefficients, in common with [1], to develop a
theory in conjunction with some experimental work
on water. The mathematical model is simpler and has
more in common with our model than that of Szekely.
These models are based largely upon Nusselt number
formulations.

The second approach, based rather upon the Graetz
number, is the one that we shall adopt. The Graetz
Problem involves the solution of the steady state radial
conduction and axial convection heat equation in
terms of an infinite series of eigenfunctions with
associated eigenvalues and eigenconstants. The analy-
sis for laminar flow has been known for some time
now [3] and more recently, Sleicher et al. [4] and
Notter and Sleicher [5] presented an analysis for the
turbulent Graetz problem in a constant diameter
cylinder wherein may be found tables of the relevant
eigenquantities and formulae for asymptotic forms.

A steady state model proposed by Shibani and
Ozisik [6] drew upon the work by Sleicher, recalculat-
ing some of the coefficients, and applied it to the freez-
ing of fluids with Prandtl numbers between 0 and 1000
although the applicability of their analysis to a fluid
with a Prandtl number of zero is suspect since the
assumption of a large Peclet number is no longer valid.
A later paper by Cho and Ozisik [7] dealt with
transient freezing, i.e. the development of the solidified
crust in time, by integral transform methods. It is
difficult, however, to ascertain blockage criteria with
these models since the results seem to indicate an
exponential type approach to pipe closure, thus neces-
sitating the use of some ad hoc definition of block-
age, whereas the present approach allows for the
possibility of complete blockage. It should be pointed
out that the fine details of blockage are complex and
other models should be applied for this sort of
information, the main interest lying not in the mech-
anism, but rather the fact, of blockage.

THE MODEL

The analysis in this work relates to the simplified
model shown in Fig. 1. A hot fluid of constant density,
viscosity, thermal conductivity and specific heat is
forced through a cold pipe of finite length and radius

by a pressure drop maintained over the length of the
pipe. The pipe wall is held at a constant temperature,
below the melting point of the fluid, providing an
isothermal boundary for the fluid whilst it is inside the
pipe. The fluid temperature on entry to the pipe is
constant and is greater than the melting temperature of
the fluid. The flow is considered to be turbulent, fully
developed and radially symmetric, allowing us to
dispense with angular components and dependencies
in the cylindrical coordinate system used in the
analysis. This last assumption is valid if buoyancy
effects and free convection are neglected. Since the flow
is turbulent, conduction of both momentum and heat
in the axial direction will be ignored as being negligible
in comparison with radial conduction, allowing us to
drop the axial double derivatives, an assumption valid
for a large Peclet number.

Initially there is no solidified layer but as time
passes, the fluid loses heat to the pipe wall and begins
to freeze inwardly. This solid layer will, like the fluid,
have constant specific heat, thermal conductivity and
adensity equal to that of the fluid. If the Stefan number
of the system is sufficiently small, then the flow of the
fluid can be described as quasi-steady allowing us to
neglect the time rate of change of temperature and
momentum in the fluid equations. This effectively
means that the fluid flow and temperature fields will
change more quickly than the position of the solid/
liquid interface.

The mathematical model is developed in the follow-
ing manner. Conservation of mass, in cylindrical
coordinates, is expressed by the equation:

8 L IYE 6 KoKy — 0 1
5;(’“)+(gz—;(rw)— (1)
where mean turbulent radial and axial velocities are
used. This equation holds in the fluid region defined by
0 <r* <é*and 0 < z* < l;. To satisfy equation (1),
we write expressions for the axial and radial velocities:

wH(r¥, z*, %) = QU )f(r*/8%)/0* (%, 1*) | (2)
u¥(r*, z*, t*) = (r*/0*)w*(66*/0z*) . 3)

Radial symmetry and the no-slip condition on the
solid/liquid interface together imply that f(R) is an
even function of R and that f(1) = 0. Without loss of
generality, we may impose a further condition on f,
namely

Fic. 1.
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1o
57 L 2K¥f(r*/6*)dr* = 1, 4)
or alternatively
1
f 2Rf(R)dR = 1. (5)
o]
This ensures that the bulk mean axial velocity, defined
by
1
w*(z¥, t*) = 5z J;) 2r*¥w* dr* 6)
is given by the expression
W = Q(t*)/0%(z*, 1¥). (7

The local Reynolds number, based upon the local
diameter (i.e. 26*) is then expressed as

Re = 25%* /v = 2Q(t*)/vS*. (8)

Now most of the terms in the axial momentum
equation, being either of the order of the Stefan
number or inversely proportional to the square of the
initial Peclet number, are neglected. There remains the
standard formula relating the pressure gradient to the
bulk axial velocity

Op*/0z* = — pf'ir? /4o ©

where f” is the friction factor. For laminar flow, the
friction factor is inversely proportional to the Rey-
nolds number (Hagen-Poiseuille law for Reynolds
number less than about 2000), whereas for turbulent
flow the situation is more complex. For a Reynolds
number in the range from about 2000-10°, a suitable
law is the well known Blasius formula,

f'=03164 Re™ 1 (10)

which will be used in equation (9). More accurate
expressions for friction laws do exist, valid over larger
ranges of Reynolds number, but these are usually
implicit in nature, making analysis difficult. Numerical
analysis can be performed with some confidence on
pipe configurations where the initial Reynolds number
lies within the range of validity of (10). Above this range
results may be suspect, but no more so than the tacit
assumption that the Blasius friction law holds good for
pipes of variable radius. Below this range, the laminar
analysis as presented in Part I [8] may be used. On
using the above definitions of Reynolds number and
friction factor in equation (9), we recover

ap*/az* = —0.3164 (2 24)py! 4QTH(r*)5* 194 (11)
The pressure must satisfy the boundary conditions
p*(0,t*) = P and p*(l,, t*) = 0 appropriate to the
assumption of a constant pressure drop maintained

over the pipe length. There are thus two boundary
conditions for a 1st-order differential equation and so

the solution is:
!
ﬁ) §* 194 gx

*

J‘Iﬂ 5*—19/’4dx

0

pr(z*, t*) =P (12)
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where Q(t*) is also determined by this equation and is
given by

I 4.7
Q(t*) = (8v)*7 [P/(0.3164 ov J gr194 dz*)} .
’ (13)

In this way, we see that the velocity field is defined by
the fixed initial pressure drop. It is clear that as the
crust thickens (i.e. as d* decreases) the axial inlet
velocity will decrease although the axial velocity as a
whole will increase along the pipe. The decrease of the
inlet velocity is due to the increasing viscous resistance
whilst the narrowing of the effective radius along the
pipe accounts for the increase in speed. This approach
to inlet conditions is fundamental and is the main
reason why it is possible to obtain blockage criteria.
Other models have proposed that it is the inlet axial
velocity which, as opposed to the pressure drop, is held
constant, an untenable position we believe since the
axial velocity must then increase indefinitely as the
pipe blocks.

THERMODYNAMICS

For a description of the heat transport we use the
convective diffusion equation, ignoring axial con-
duction and the time derivative since they are of the
order of the inverse square of the initial Peclet number
and the order of the Stefan number respectively. Thus

LOTH LT 18 T

ar i T U

u
r* or*

) (14)

where mean turbulent quantities are again used and g*
is the radially dependent turbulent thermal diffusivity.
This diffusivity is typically the same as the laminar
diffusivity near boundaries but is higher near the
centre of the flow, see e.g. Kays [9]. Unfortunately,
from the points of view of simplicity, g* also depends
upon the Prandtl and Reynolds numbers.

In the solid region, defined by 6* < r* < r, the
velocities u* and w* are zero and g* is constant, hence
the temperature in the crust is given by:

T*=TW+(Tm_T)h‘("°/’*l

*1n (ro/0%) (13)

satisfying the isothermal boundary conditions on the
pipe wall and the solid/liquid interface. The fluid
region needs more detailed consideration and to this
end it is convenient to non-dimensionalize the
equations:

T* =T, +(Ty — T,)0(r,z,1), (16)
3* =ryd(z,t), (17)
r¥ =rgr, (18)
z* = ryPe,z, (19)
t* = rat/2x St, (20)
g* = Kg(r/d) (1)
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which gives
08 86 oo
52f(/ ){ &z or F}
_kroPeg 1 2 20
00 rallsy
where 6 is subject to the boundary conditions
6(r,0,1) = 1, (23)
0(,2.1) = 0. (24)

Certain conditions on f{r/d ) have already been noted
and those on g{r/d) are that g(0) > 1 and g(1) = 1 with
dg(x)/dx < 0. Note that Re, (the Reynolds number at

= 0) is given by
a7
64 xl, Gz] , (25)

Reo = ZQ(O /VI‘O = {m ;
o

and so if we define the quantity

D(t) = Q(O)/Q(1) (26)
we have that
‘[7
D(t) = [-1« f‘x 3104 (2,0 dzT (27)
% Jo
where
64 4T Trly, T
a4 = s‘OfrOPeD = [5‘5"1-62(; ] [;;;:‘ . (28)

There is a further interface condition to (14), viz.

o6* aT* aT*
QO (kS (ke 29
pL or* ( s ar* ),m:(;w < f or* ),,xn(g*w ( )

which in dimensionless form now becomes, using (15),

,_ B a6
At dlné  \or ) _s-

where the dimensionless freezing parameter is
B =k{Tq— TWkdTo— Ty (31

To remove the difficulty of having to numerically track
a moving boundary, we transform the independent
variables by writing R = r/d (and keeping z asitis) to
obtain the ‘crust free’ version of (22):

(30

SR =Dy a‘;( ) (32)
where T(R, z) = B(R¥, z, t) subject to
T(R,0) = 1, (33)
T(l,z) =0 (34)
and (30) becomes
3 B ar
X T (57{) (35)

In practice, we look for a solution to (35) subject to
(32)-(34) rather than vice versa. Further con-
ditions on (35) are:

Mz, 0)=8(0,1)= L (36}

THE TURBULENT GRAETZ PROBLEM
Equation (32) can be solved by writing:

T(R,z)= ¥ C,R Ryexp[— A22D():]. (37)
n=0
where from (33)
Y CR(R) =1 (38)
n=0
and R,(R) satisfies the eigenvalue problem:
d 1
Rq A2 (R) =
iR [ (R) ]+ 5 An RAARIR(R)=0 (39)
with initial conditions
R,(0) = 1 and R,(0) =0 (40)

where the eigenvalues 4, are such that they must satisfy
{34), i.e. we must have that

R,(1)=0. @1

Solutions to the system of equations represented by
(39) have been generated numerically for the first few
values of n (see [4-6]) and for larger eigenvalues,
asymptotic expressions have been derived. We use the
notation and results presented in [4] and [5]:
=(n+2/3+[clntn+2/3m

+ 7/18n]/2n(n + 2/3) {42)
where both G and e depend upon the Reynolds number
of the flow and the PrandtI number of the fluid through
the turbulent functions f and g in {39). Equation (35}

requires a series for ¢7/¢R evaluated at R = 1, Thisis
obtained from {37) as the series expansion

(-5)...

izA exp[—22D(1)z]  (43)
where

A, = — C,R,(1)]2 (44)

and the asymptotic {large n) expression for A4, is

(H/G™'? 3°° T(2/3)

"G I Y Tapm)

! 1
PR 45
x{l IMGLY [c(lnG} 7 1)+ T “[J {45)
where H is defined as
= (0.3164/32) Re**
1 df
= e = —— = Ref'/32. (46
2 dR |, ef’} (46)

The quantities ¢ and G which are present in these
asymptotic formulae have been listed for certain
discrete values of Re and Pr in [5]. It is worth noting
that the expression for the interface heat flux will be
calculated as a function of z and ¢ and since the flux
depends upon the flow, the coefficients and eigenvalues
must be calculated as functions of the local Reynolds
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number. Thus there is no ‘once and for all’ calculation
of the heat flux. We have already remarked that the
axial velocity, and so by implication the local Reynolds
number, is an increasing function of z but a globally
decreasing function of ¢. In fact, numerical evidence
indicates that the dependence of the Reynolds number
on z is rather weak and so it might be possible to avoid
the recalculation of the 4, and 4, at every axial grid
point by using a time dependent, axially averaged,
Reynolds number.

NUMERICAL CALCULATIONS

Because of the four parameter nature of the system
(ie. Rey, Pr, o and B) it would be difficult to present
results which would be meaningful in a general sense.
Instead, the method of solution will be outlined, with
an example, and the reader should refer to an earlier
paper [ 10] by the authors which describes a computer
programme written in FORTRAN designed to cal-
culate the time development of crusts with laminar or
turbulent flow given the physical parameters of the
system.

The first step is to calculate coefficients for a pair of
4th-order polynomial functions, dependent upon Re,
for the turbulent flow parameters ¢ and G. These are
calculated from knowledge of the Prandtl number and
using the data foundin [4] and [ 5]. Subsequent values
of these parameters may be calculated without re-
ferring again to the Prandtl number. At the start of the
experiment, the temperature gradient is zero and so
equation (35) can be integrated exactly, for small ¢, to
give

2Bt =1 ~ 6% + 6%1In (6% 47)
which can be inverted for small ¢:
Sz, ) = 1 — (Br)'7? {48)

to give an initial evenly distributed ‘thin-ice’ crust,
except at z = 0 where (36) always holds. The quantity
D(t)can then be calculated by Simpson’s Rule. Follow-
ing this, it is necessary to calculate Re at every axial
grid point, from the relation:
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Table 2. Dimensionless parameters

Run (1) Run (2} Run (3) Run (4}
B 0.04297 0.08594 0.12891 0.17189%
o 0.1289 0.1289 0.1289 0.1289
Pe, 77.6 71.6 716 77.6
Pr 0.01049 0.01049 0.01049 0.01049
Gz 30.598 30.598 30.598 30.598
St 0.0262 0.0262 0.0262 0.0262
Re, 7399 7399 7399 7399

and hence it is then possible to calculate ¢ and G from
which we obtain as many of the values of 4, and 4, that
are necessary for the calculation of the interface heat
flux. A 4th-order Runge—Kutta process is then used to
calculate new values for § and the procedure continues
with the next calculation for D(t). This is done until
either a steady state is reached or until the pipe blocks.

For the purposes of numerical analysis, steady state
will be said to have been reached if the magnitude of
the crust velocity at the pipe exit becomes smaller than
some appropriate value (typically about 107° in
dimensionless units). Blockage can be defined when
the radial position of the crust goes negative (as it may
in this model) but in most cases the calculations will
stop since near blockage, more detailed analysis
should be applied (see e.g. [11]). Instead, we note that
the pipe will block and this is signalled either by D(t)
becoming too large or by the fact that the crust velocity
at the exit, having reached a non-zero minimum
absolute value, is beginning to increase again. In order
to illustrate the behaviour of the crust, we will provide
four specific examples to demonstrate behaviour with
varying wall temperature. Table 1 lists the inputs for
these examples while Table 2 lists the associated
dimensionless parameters. Figures 2 and 3 show the
growth of the crusts at the pipe exit with time and the
rates of crust growth respectively. From these phase
diagrams it is easy to see which will block well before
the same information can be deduced by looking at the
crust alone.

The predicted blockage time of run (4), from Fig. 2,is

- Sz 1) = 18(z
Re = 20(1)/vrod(z, 1) = Reo/o(z, )D(1)  (49) about 61 s, although it should be remembered that this
Table 1. Inputs
Unit Run (1) Run (2) Run (3} Run (4)

Pipe length (cm) 20 20 20 20

Pipe radius (cm) 2 2 2 2

Pressure drop (kgm~!s~ %) 452.4 4524 4524 4524

Density (kgm ™) 7232 7232 7232 7232

Kinematic viscosity { x 107%m?s ™%} 4.63 4.63 4.63 4.63

Solid conductivity (Wm ™ 'K ™1} 198.7 198.7 198.7 198.7

Fluid conductivity (Wm™ 'K ™!} 231.2 231.2 2312 231.2

Specific heat (Jkg 'K ™) 724 724 724 724

Latent heat (kJkg™!) 276 276 276 276

Fusion temperature (K) 1800 1800 1800 1800

Inlet temperature (K) 1900 1900 1900 1900

Wall temperature (K) 1795 1790 1785 1780

Initial mass flow rate (kgs™1) 7.783 7.783 7.783 7.783

[derived = npQ(0)]
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Dimensionless time

2 3
T
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Time, s
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is not to be taken too seriously since the model would
no longer be accurate. It does, however, provide a
reasonable minimum estimate. Run (2) seems to be
near critical since it has not succeeded in satisfying the
criterion for steady state in the time available although
the exit crust has remained at 16.6%, blocked for over
10s with a value for D(t) = 1.288 for considerably
longer. Run (1) has stabilised at 7% blockage after just
under 35 s with D = 1.108. Another run, not shown in
the figures since differentiation between them would be
difficult, was performed with exactly the same inputs as
run (1) but with double the pressure drop. In this case,
a steady state blockage value was 7.2%, with D =

P. SampsoN and R. D. Gisson

1.1006 having taken just over 45s to reach steady
state.

CONCLUSIONS

This model should provide a reasonable description
of the solidification of liquids. It is most suitable for
those situations where unblocked steady states are
reached where it can be used to describe the entire
process. In the case of blockage, the entire process
cannot be described with it since closure requires a
more refined model as mentioned earlier. In addition,
there is the problem, which does not arise in turbulent
flow, that as the pipe progresses towards blockage the
Reynolds number must eventually drop below the
turbulent/laminar transition region. It is not clear
whether in this case the flow remains turbulent but this
has been considered as certain parameters (viz. ¢, G
and H) are limited by their laminar values in the
computation which should ensure that the description
is accurate for as long as possible. However, we do not
regard the details of blockage as particularly impor-
tant but rather do we maintain that blockage will
occur if there are no steady state solutions.

More accurate models would naturally include
variable viscosities and densities and possibly more
realistic fluids where no single melting point exists but
rather a melting range over which the mechanism of
latent heat would operate.
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APPENDIX

We examine the existence of stable steady state solutions to
eqn. {35) by setting the right-hand side equal to zero. It will be
shown that there are no, one or two solutions which satisfy
{35) and (27) dependent upon the values found for o, B, Re,
and Pr. The analysis is similar to that described in [8] but
since exponents of 4/7 appear in the turbulent model it is not
immediately clear that singularities will not arise.

If we assume a steady state solution for &, denoted by 5(z)
and a corresponding steady state value of D, for D(r) then
from (35) and (43) we can write

8(z) = exp [— B/ Y 24,exp(-— A,Z,Dsz):l (A1)
=0
and we can define a function yu:

u(D) =D — é f 38,7194 (2} dz. (A2)
3]
By substituting (A.1)into (A.2) we can plot, for fixed o, Pr and
Rey, a graph of y against D, for parameter B. An accurate plot
can be obtained only by including the dependence of 4, and
A, upon D, but the general shape of the curves will be
unaffected. To obtain u(D,) accurately, iteration would be
performed with D, and d{z) and it can be shown that,

Fic. Al
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provided that the initial estimate of D, is sufficiently close to
unity, the iterative scheme would converge, if convergent, to a
steady state solution.
Figure Al shows a sketch of u(D,} for variable B and fixed o,
Pr and Re, showing the three different cases that might arise.
In particular we will examine the case appropriate to two
steady state solutions in the following analysis.
On referring to the figure, we wish to show that D_ is a
stable solution and that D, is unstable. First we shall write

08> 2B

-— =E'1"g+ﬂzst)

- (A3)

for0 < z < eand for 1 > where the function f behaves thus:

F=0(""*asz 0, (Ada)
7 =0[exp(~ kz)]asz — =, {A.4b)
316z < Oforall z > 0 {Adc)
and 8% is 0(1) as z — 0. Equation (A.1) is then
63(2) = exp[ — 2B/f(2)] (A5)

where f(z) is the assumed steady state value of fiz,1). We
introduce linear perturbations about the steady state by
writing

D(1) = D, + d(1):8%(z, 1) = 82(z) + d(z) exp (1) (A.6)

where ¢ is a growth rate away from steady state. Substituting
into (A.3) and (27) gives, after linearization,

(0 + 2B/8} In* 2)4(z) = ze~ " d(t)(df./dz)/D, , (A.7)

9 1
d(l} = et Ds‘ 34
14 o

f qR, @ d (AS)
o

where df/dz in (A.7)is an approximation since the small axial
variationsin the A, and 4, have been neglected asirrelevant to
the analysis. If we let

1 k3
d, = —j 4(2)8; 27" (2)dz (A9)
a o
then (A.7) and (A.8) give
-19
(¢ +2B/6 In? 2)(z) = — = D] diz(df/dz) (10

and so we obtain

19
Gz)6; 37 = — ED;’/‘* z(df,/dz)/(c + 2B/82 In? 82)

(A1)

which can then be integrated, excluding the trivial solution
where d; = 0, to give the condition

19 1 2(df,/dz) dz

3
-7/4
L 8274 (6 + 2B/32 In? 82

1=—-——D77%-
14 o

) (A.12)

from which ¢ can be, in principle, obtained. Now, on
substituting (A.5) into (A.12) we obtain

J" 2Bz(df,/dz)exp (27B/4f.) dz
o [20B +f2exp(2B/f)] (

—7:41

1=—-— -

47 g

Al3)
Clearly, if & = 0 then this reduces to

19
14

which has the solution

4 47
Ds = <_~.> 55‘ SQ{A(a) =

1=-

Ds'”‘z—Bf exp (19B/4f)z df/f2  (A.14)
x Jo

4 47
‘ <§> exp [19B/7]  (a.15)
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which is also obtainable directly from (A.2) and so {A.15)
satisfies the equation pt = du/dD, = O which means that the
case o = 0 represents the critical case given by D in Fig Al

When eqn. (A.2) has two distinct roots, D and D, it can
be seen wom the figure that there exists a value D, such that
D, < D, < D, which will satisfy the condition du/dD, = 0
but will not satisfy u = 0. We know that since du/dD, > 0at
D, = D then

4 47
Dss>(ﬁ> exp [19B/7 ()] {A.16)

and also

47
D, < (%) exp [19B/7/,,(x)] (A.17)

where f. (o) and f(u) are the corresponding appropriate
values of f(«). If we assume that o is positive then (A.13) gives

. —~19B { 2(df./dz) exp (27 B/4f. ) dz
TaD* Jo 2Be + f2exp 2B/T)

P. SampsoN and R. D. GissoN

—-19B * . R
< W J;} z{dﬁs_/dz)exp (19B/41.,) dz/f:f
4 ~ 74 4
= 3D exp [19B/4.(x)] - - (A.18)
since df./dz < 0, hence
4 417
D, < (ﬁ) exp [19B/7/.()] (A.19)

which contradicts {A.16) and so o must be negative if D, is to
satisfy {A.13) which means that D, represents a stable
solution. If & is negative then the condition for D to satisfy
(A.13) becomes, by exactly the same argument,

4 R 4
1> = D% exp [19B/4f ()] ~ 7 {A.20)

where the inequality has been reversed since

2Bo + f2 exp(2B/f.,)

is now less than f2 exp(2B/f..) due to the sign of 5. Equation
{A.20} contradicts {A.17) and so D, is an unstable solution.

UN MODELE MATHEMATIQUE DU BLOCAGE DE TUYERE PAR LE GEL
I—ECOULEMENT TURBULENT

Résumé—Un métal fondu s'écoulant dans un tuyau cylindrique est solidifié par la paroi froide du tuyau et

une crofite solide est formée sur la paroi. On présente un modéle pour décrire la croissance de cette crofite,

I'écoulement étant turbulent. Des critéres qui déterminent s’il y a blocage ou non sont étudiés et quelques

résultats de I'analyse théorique sont présentés pour des écoulements avec un nombre de Reynolds compris
entre 2000 et 100.000 et un nombre de Prandtl entre 0,007 et 0,1

EIN MATHEMATISCHES MODELL FUR DIE BLOCKIERUNG EINER MUNDUNG DURCH
GEFRIEREN

Zusammenfassung-—HeiBes, geschmolzenes Metall, das durch ein zylindrisches Rohr flieQt, erstarrt an den

kalten Rohrwiinden und bildet dort eine feste Kruste. Ein Modell wird angegeben, das fiir turbulente

Rohrstromung dic Wachstumsrate dieser Kruste beschreibt. Die Kriterien wurden untersucht, die angeben,

ob das Rohr zufriert oder nicht. Einige Ergebnisse der theoretischen Berechnung werden angegeben. Sie

gelten fiir Stromungen mit Reynolds-Zahlen zwischen 2000 und 100000, die zu Fliissigkeiten mit Prandtl-
Zahlen im Bereich zwischen 0,007 bis 0,1 passen.

MATEMATUYECKAST MOAEJb 3ATTMPAHUA COIJIA TIPH OCTBIBAHUU
PACTINABJAEHHOTO METAJIJIA. YACTD 11 - TYPBYJEHTHOE TEUEHUE

Annotauun — [lpy Tedenud B WWIMHApHUecKkod TpybGe ropsunil pacinaBieHHsil METaL1 JacTbiBaeT

y XONOIHBIX CTEHOX TPYOBL B pe3y/ILTaTe HEro Ha CTeHkax obpalyercs Teepaas kopka. /s onucanus

nponecca oOPA3OBAHUS TAXOH KOPKH NPEACTABACHA MOAEAb, B KOTOPOH NPEANONATACTCR, 4TO TeMeRHe

B TpyOe aABasercs TypOyseuTHbIM. TIpHBE#SHB! KDUTEPHH A8 ONPEeICHHS BOIMOXHOCTH BOSHHKHO-

BEHHA 3ANUPAHKA, H TPEACTABIEHL HEKOTOPLIE PE3YIbTATh TEOPETHHCCKOTO AHANN3A [UTR TCHEHHI CO

3naveHHAMH yHena Peifnonsaca, nexawmMu B auanaszone 2000-100 000, 4to coOTBETCTBYET KHIAKOCTAM
co 3navenuamu wucna Mpauaras ot 0.007 no 0.1



